A ORANGE reennowgy

COMPUTER EDUCATION

MORE OETAILS CONTACT US :
+31 88402 439088 / +91 44 - 4233 3326

The “C” Programming Language course syllabus - associate level

Course description

The course fully covers the basics of programming in the “C” programming
language and demonstrates fundamental programming techniques, customs and
vocabulary including the most common library functions and the usage of the
preprocessor.

Learning objectives

To familiarize the trainee with basic concepts of computer programming and
developer tools.

To present the syntax and semantics of the “C” language as well as data types
offered by the language

To allow the trainee to write their own programs using standard language
infrastructure regardless of the hardware or software platform

Course outline

Introduction to compiling and software development
Basic scalar data types and their operators

Flow control

Complex data types: arrays, structures and pointers
Structuring the code: functions and modules
Preprocessing source code

Chapters:

Absolute basics



Languages: natural and artificial

Machine languages

High-level programming languages

Obtaining the machine code: compilation process
Recommended readings

Your first program

Variable - why?

Integer values in real life and in “C”, integer literals
Data types

Floating point values in real life and in “C”, float literals
Arithmetic operators

Priority and binding

Post- and pre -incrementation and -decrementation
Operators of type op=

Char type and ASCII code, char literals

Equivalence of int and char data

Comparison operators

Conditional execution and if keyword

printf() and scanf() functions: absolute basics
Flow control

Conditional execution continued: the “else” branch
More integer and float types

Conversions - why?

Typecast and its operators

Loops - while, do and for



Controlling the loop execution - break and continue

Logical and bitwise operators

Arrays

Switch: different faces of ‘if’

Arrays (vectors) - why do you need them?

Sorting in real life and in a computer memory

Initiators: a simple way to set an array

Pointers: another kind of data in “C”

An address, a reference, a dereference and the sizeof operator
Simple pointer and pointer to nothing (NULL) & operator
Pointers arithmetic

Pointers vs. arrays: different forms of the same phenomenon
Using strings: basics

Basic functions dedicated to string manipulation

Memory management and structures

The meaning of array indexing

The usage of pointers: perils and disadvantages

Void type

Arrays of arrays and multidimensional arrays

Memory allocation and deallocation: malloc() and free() functions
Arrays of pointers vs. multidimensional arrays

Structures - why?

Declaring, using and initializing structures

Pointers to structures and arrays of structures



Basics of recursive data collections

Functions

Functions - why?

How to declare, define and invoke a function

Variables' scope, local variables and function parameters
Pointers, arrays and structures as function parameters
Function result and return statement

Void as a parameter, pointer and result

Parameterzing the main function

External function and the extern declarator

Header files and their role

Files and streams

Files vs. streams: where does the difference lie?

Header files needed for stream operations

FILE structure

Opening and closing a stream, open modes, errno variable
Reading and writing to/from a stream

Predefined streams: stdin, stdout and stderr

Stream manipulation: fgetc(), fputc(), fgets() and fputs() functions
Raw input/output: fread() and fwrite() functions
Preprocessor and complex declarations

Preprocessor - why?

#include: how to make use of a header file

#define: simple and parameterized macros

#undef directive



Predefined preprocessor symbols

Macro operators: # and ##

Conditional compilation: #if and #ifdef directives

Avoiding multiple compilations of the same header files
Scopes of declarations, storage classes

User defined types-why?

Pointers to functions

Analyzing and creating complex declarations TECHNOLOGIES

Syllabus for “C++ Program

“C++ programming language”
Description:

In this class, we will learn the basics about C++ programming language such as
variables, data types, arrays, pointers, functions and classes etc.

Obijective:

At the end of the class, we expect people to have a good understanding about the
concept of object-oriented programming using C++, be able to write and read
basic C++ code.

Prerequisite:

No prior knowledge about C++ is required, but people are expected to have some
basic knowledge about computers, some knowledge about one or two other
programming languages such as Perl, PHP, Python or Java etc is preferred.
Course Outlines:

Introduction

What is C++7?

Why C++?

Cand C++



Exception Handling

Object Oriented Programming
Standard Template Library
Types and declarations

Types

Booleans

Integer Types

Floating-Point Types

Sizes

Void

Enumerations
Declarations

Pointers, Arrays and Structures
Pointers

Arrays

Pointers into Arrays
Constants

References

Pointers to void
Structures

Expressions and Statements
A Deck Calculator
Operator Summary
Statement Summary

Comments and Indentation



Functions

Function Declarations
Argument Passing

Value Return
Overloaded Function Names
Default Arguments
Pointer to Function
Macros

Namespaces and Exceptions
Namespaces

Exceptions

Source Files and Programs
Separate Compilation
Linkage

Using Header Files
Programs

Classes

Classes

Access Control
Constructors

Member functions

Static members
Destructors

Memory allocation



Member initialization
Operator overloading
Introduction

Operator Functions

A Complete Number Type
Conversion Operators
Friends

Large Objects

Essential Operators
Subscripting

Functions Calls
Dereferencing

Increment and Decrement
A String Class

Derived class

Introduction

Derived Classes

Abstract Classes

Design of Class Hierarchies

Class Hierarchies and Abstract Classes



