
 The “C” Programming Language course syllabus – associate level Course description The course fully covers the basics of programming in the “C” programming language and demonstrates fundamental programming techniques, customs and vocabulary including the most common library functions and the usage of the preprocessor. Learning objectives To familiarize the trainee with basic concepts of computer programming and developer tools. To present the syntax and semantics of the “C” language as well as data types offered by the language To allow the trainee to write their own programs using standard language infrastructure regardless of the hardware or software platform Course outline  ntroduction to compiling and software development  asic scalar data types and their operators  low control  Complex data types arrays, structures and pointers  tructuring the code functions and modules  Preprocessing source code Chapters  bsolute basics

 Languages natural and artificial  achine languages  igh-level programming languages  btaining the machine code compilation process  ecommended readings  our first program  ariable – why?  nteger values in real life and in “C”, integer literals Data types  loating point values in real life and in “C”, float literals  rithmetic operators  Priority and binding  Post- and pre -incrementation and -decrementation  perators of type op  Char type and C code, char literals  quivalence of int and char data  Comparison operators  Conditional execution and if eyword  printf and scanf functions absolute basics  low control  Conditional execution continued the “else” branch  ore integer and float types  Conversions – why?  Typecast and its operators  Loops – while, do and for

  Controlling the loop execution – brea and continue  Logical and bitwise operators rrays  witch different faces of if  rrays vectors – why do you need them?  orting in real life and in a computer memory  nitiators a simple way to set an array  Pointers another ind of data in “C”  n address, a reference, a dereference and the sizeof operator  imple pointer and pointer to nothing LL  operator  Pointers arithmetic  Pointers vs. arrays different forms of the same phenomenon  sing strings basics  asic functions dedicated to string manipulation  emory management and structures  The meaning of array indexing  The usage of pointers perils and disadvantages  oid type  rrays of arrays and multidimensional arrays  emory allocation and deallocation malloc and free functions  rrays of pointers vs. multidimensional arrays  tructures – why?  Declaring, using and initializing structures  Pointers to structures and arrays of structures

 asics of recursive data collections unctions  unctions – why?  ow to declare, define and invoe a function  ariables scope, local variables and function parameters  Pointers, arrays and structures as function parameters  unction result and return statement  oid as a parameter, pointer and result  Parameterzing the main function  xternal function and the extern declarator  eader files and their role iles and streams  iles vs. streams where does the difference lie?  eader files needed for stream operations L structure  pening and closing a stream, open modes, errno variable  eading and writing tofrom a stream  Predefined streams stdin, stdout and stderr  tream manipulation fgetc, fputc, fgets and fputs functions  aw inputoutput fread and fwrite functions  Preprocessor and complex declarations  Preprocessor – why?  include how to mae use of a header file  define simple and parameterized macros  undef directive

  Predefined preprocessor symbols  acro operators  and   Conditional compilation if and ifdef directives  voiding multiple compilations of the same header files  copes of declarations, storage classes  ser defined types-why?  Pointers to functions  nalyzing and creating complex declarations TCL yllabus for “C++ Program “C++ programming language” Description n this class, we will learn the basics about C++ programming language such as variables, data types, arrays, pointers, functions and classes etc. bjective t the end of the class, we expect people to have a good understanding about the concept of object-oriented programming using C++, be able to write and read basic C++ code. Prerequisite o prior nowledge about C++ is required, but people are expected to have some basic nowledge about computers, some nowledge about one or two other programming languages such as Perl, PP, Python or Java etc is preferred. Course utlines ntroduction  hat is C++?  hy C++?  C and C++

  xception andling  bject riented Programming  tandard Template Library Types and declarations  Types  ooleans  nteger Types  loating-Point Types  izes  oid  numerations  Declarations Pointers, rrays and tructures  Pointers  rrays  Pointers into rrays  Constants  eferences  Pointers to void  tructures xpressions and tatements   Dec Calculator  perator ummary  tatement ummary  Comments and ndentation

 unctions  unction Declarations  rgument Passing  alue eturn  verloaded unction ames  Default rguments  Pointer to unction  acros amespaces and xceptions  amespaces  xceptions ource iles and Programs  eparate Compilation  Linage  sing eader iles  Programs Classes  Classes  ccess Control  Constructors  ember functions  tatic members  Destructors  emory allocation

 ember initialization perator overloading  ntroduction  perator unctions   Complete umber Type  Conversion perators  riends  Large bjects  ssential perators  ubscripting  unctions Calls  Dereferencing  ncrement and Decrement   tring Class Derived class  ntroduction  Derived Classes  bstract Classes  Design of Class ierarchies  Class ierarchies and bstract Classes

